

Cystic Lung Disease

Elizabeth (Lisa) Petri Henske, MD

Director, Center for LAM Research and Clinical Care, Brigham and Women's Hospital

Medical Oncologist, Dana-Farber Cancer Institute Professor of Medicine, Harvard Medical School

Elizabeth P Henske, MD

- Professor of Medicine, Harvard Medical School
- Director, Center for LAM Research and Clinical Care, Brigham and Women's Hospital
- Medical Oncologist, Dana-Farber Cancer Institute
- Henske Laboratory:
 - Tuberous sclerosis complex, LAM, Birt Hogg-Dube

Disclosure

No financial conflicts of interest

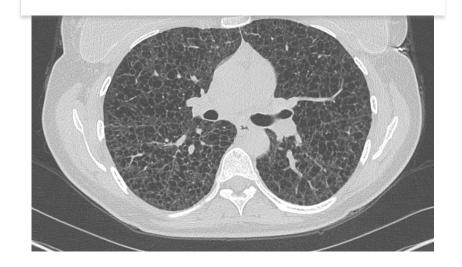
- All women with suspected LAM should have abdominal imaging because 50% have:
 - A) Hepatic angiomyolipomas
 - B) Renal angiomyolipomas
 - C) Ovarian cysts

Patients with Birt-Hogg-Dube should have abdominal imaging because 25% develop:

- A) Liver cysts
- B) Renal cell carcinoma
- C) Peritonitis

Proven effective therapy for Lymphangioleiomyomatosis (LAM):

- A) VEGF inhibition
- B) mTOR inhibition
- C) Corticosteroids


Learning Objectives

- Understand causes of cystic lung disease
- Identify cystic lung disease with specific genetic signatures:
 - Lymphangioleiomyomatosis (LAM)
 - Pulmonary Langerhans cell histiocytosis (PLCH)
 - Birt Hogg Dube syndrome (BHD)
- Recognize kidney tumors associated with cystic lung disease (LAM, BHD)
- Diagnose cystic lung disease with proven specific therapy (LAM)

What is a cyst?

Gas-filled round or irregular low attenuating area with a thin wall (<3mm)

Cystic lung diseases

Lymphangioleiomyomatosis Langerhans cell histiocytosis Birt Hogg Dube syndrome

Emphysema

Pulmonary metastasis

Subacute (?chronic) hypersensitivity pneumonitis

Desquamative interstitial pneumonia

Barotrauma/ ARDS

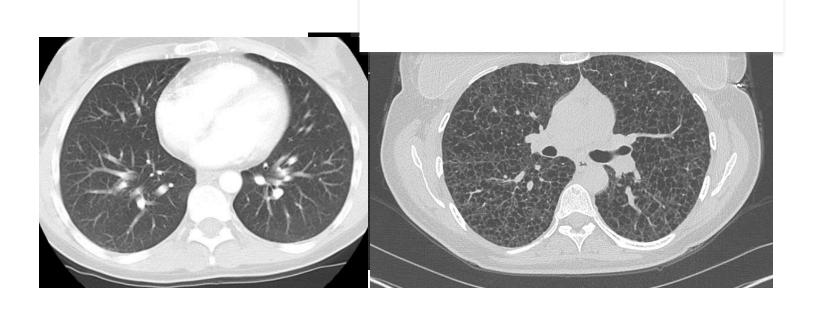
Pulmonary infection- pneumatoceles

Necrobiotic nodules

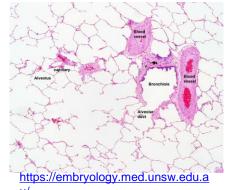
Light chain disease

Lymphoid interstitial pneumonia

Case Study

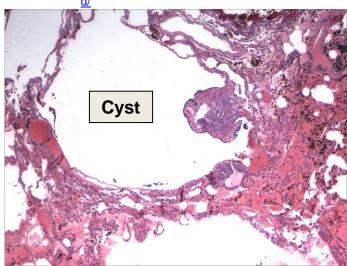


- 34 year old
- Mother of 3
- Mountain bikes, works full time
- Progressive shortness of breath over 3 yrs
- "always feel tired"
- Severe episode shortness of breath while water skiing

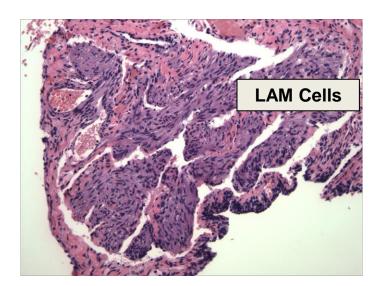

Case Study: 34 year old, progressive dyspnea for 3 years

Technician: DJ947	Atte	nding: P	o-Shun Le	e, M.D.			Referring	g: Hilary J. Goldberg, M.D.
ATS compliant tests a	are indicated by	a 🗸 :	FVC 🗸	FRC	DLCO	Raw		
Spirometry	Predicted Range			Pre Bronchodilator				
•piromony		Mean	95%		Actual	% Pred	١.	Obstructive of
FEV ₁	L	3.17	2.61		1.84	58		Costructive (
FVC	L	3.76	3.08		3.96	105		Restrictive?
FEV ₁ / FVC	%	84	75		46	55		Nestrictive:
FEV ₆	L	3.81	3.11		3.86	101		
FEV ₁ / FEV ₆	%	85	76		48	56		
FEF ₂₅₋₇₅	L/s	3.61	2.25		0.88	24		
PEFR	L/s	7.16	5.40		7.04	98		

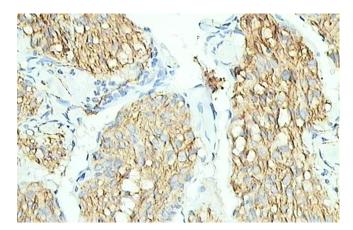
Case Study: Chest CT



Normal Chest CT

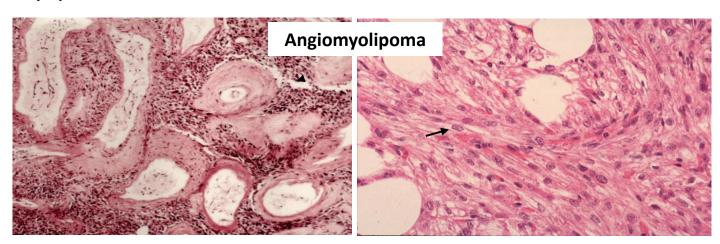


Case Study: Diagnostic Lung Biopsy


Lung transplant, died at age 37

Lung destruction/cysts

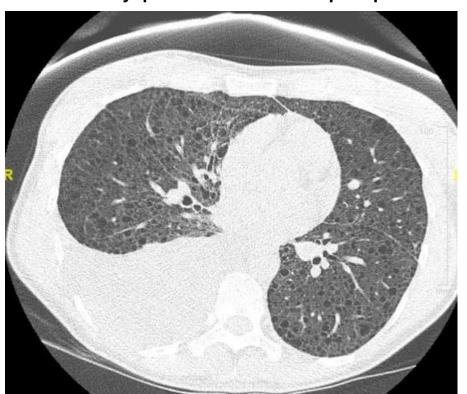
Higher power: smooth muscle-like LAM Cells


LAM cells in lymph node, muscle actin stain

LAM is a multi-system disease

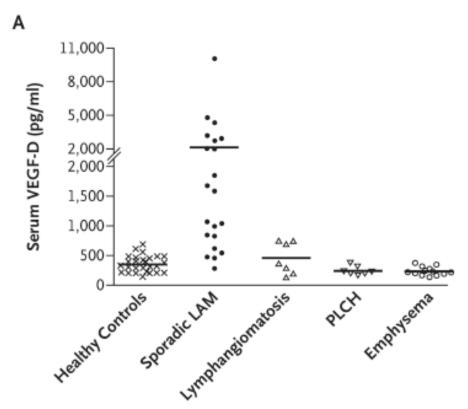
Renal angiomyolipomas: 60%

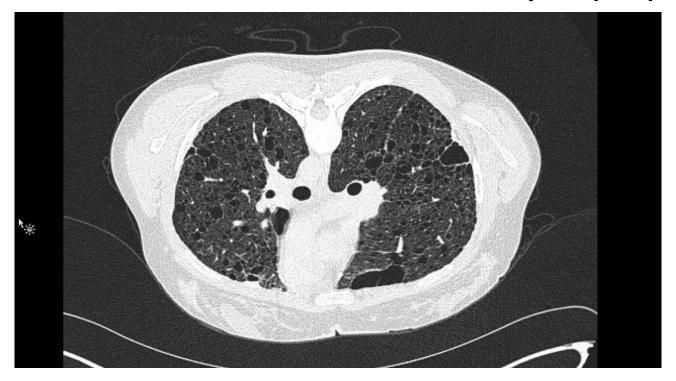
Lymph nodes: 70%


Chylous pleural effusions: <10%

Karbowniczek ... Henske Am J Pathol 2003

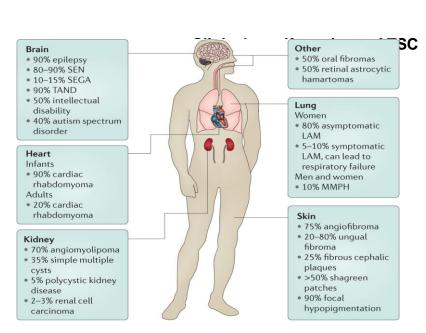
LAM-associated chylous effusion


30 year old First noted dyspnea about 6 months post-partum

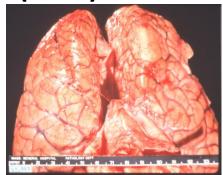

Diagnosis of LAM: VEGF-D Serum Biomarker

• Typical cystic changes plus

- Renal angiomyolipoma or
- Chylous effusion or
- VEGF-D >800pg/ml

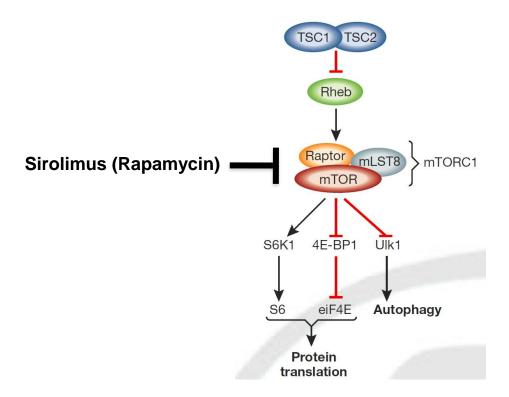


Lymphangioleiomyomatosis (LAM): Occurs in women with Tuberous Sclerosis Complex (TSC)



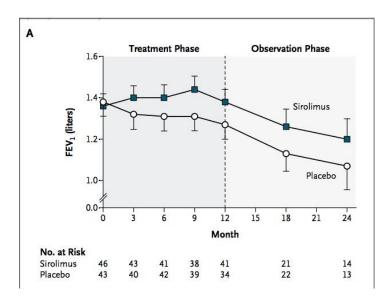
FEV1 fell from 77% to 50% in 2 years

Tuberous Sclerosis Complex is a Cause of Lymphangioleiomytomatosis (LAM)



Cerebral Cortical Tuber

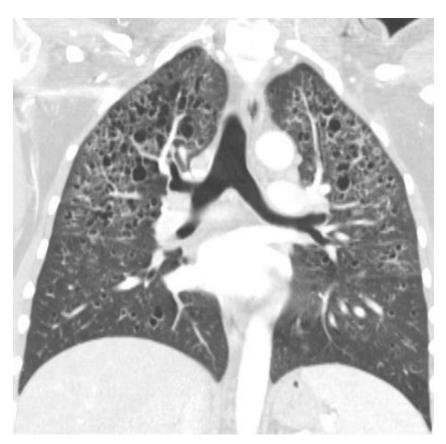
Cardiac Rhabdomyoma (prenatal)


mTOR Kinase is Activated in LAM Cells

Neuman and Henske, EMBO Molec Med 2011

Efficacy and Safety of Sirolimus in Lymphangioleiomyomatosis

Francis X. McCormack, M.D., Yoshikazu Inoue, M.D., Ph.D., Joel Moss, M.D., Ph.D., Lianne G. Singer, M.D., Charlie Strange, M.D., Koh Nakata, M.D., Ph.D., Alan F. Barker, M.D., Jeffrey T. Chapman, M.D., Mark L. Brantly, M.D., James M. Stocks, M.D., Kevin K. Brown, M.D., Joseph P. Lynch, III, M.D., Hilary J. Goldberg, M.D., Lisa R. Young, M.D., Brent W. Kinder, M.D., Gregory P. Downey, M.D., Eugene J. Sullivan, M.D., Thomas V. Colby, M.D., Roy T. McKay, Ph.D., Marsha M. Cohen, M.D., Leslie Korbee, B.S., Angelo M. Taveira-DaSilva, M.D., Ph.D., Hye-Seung Lee, Ph.D., Jeffrey P. Krischer, Ph.D., and Bruce C. Trapnell, M.D., for the National Institutes of Health Rare Lung Diseases Consortium and the MILES Trial Group*



Double blind, placebo control Sirolimus n = 43 Placebo n = 46

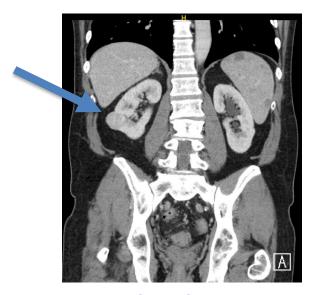
Moderate to severe LAM Mean FEV1: 1367 ml (48%) Mean age: 45 yrs 34% postmenopausal

FDA-approved

Langerhans Cell Histiocytosis

Pulmonary Langerhans Cell Histiocytosis

- Inflammatory myeloid neoplasm, arising from dendritic cells of the monocyte-macrophage lineage that resemble Langerhans cells
- >90% cigarette smoke history
- Often present with incidentally detected cysts or pneumothorax; symptoms include cough, dyspnea, fatigue
 - 20% have extrapulmonary manifestations (cystic bone lesions, diabetes insipidus)
- Somatic mutations activating the MAPK pathway in almost all cases
 - BRAF V600E (50%); MAPK2K1 (25) plus others


Pulmonary Langerhans Cell Histiocytosis: Treatment

• 40-50% spontaneous resolution with smoking cessation alone

• Steroids – limited responses

 Consider clinical trial for progressive disease (including trials of MAPK pathway inhibitors)

Birt-Hogg-Dubé (BHD)

Renal Cell Carcinoma

Birt Hogg Dube

- Autosomal dominant
 - Incidence around 1/3,500
- Lung cysts ~80% by age 50; ~40% pneumothorax
- Facial fibrofolliculomas (flesh colored)
- Kidney cancer in ~25%
- Mutations in the folliculin (FLCN) gene

Cystic Lung Disease: Overview

	Lymphangioleiomyomatosis (LAM)	Pulmonary Langerhans	Birt-Hogg-Dube (BHD)
Lung cysts	Round, Thin-walled Diffuse	Irregular shapes, thin-walls Often upper zone predominant	Round or ellipse-shaped Often medial
Other features	Women-only Chylous effusion Renal angiomyolipoma VEGF-D> 800 pg/ml	Skin and bone lesions	Kidney cancer Skin lesions
Pneumothorax	60%	10-20%	40%
Genes	TSC1 or TSC2	BRAF, MAPK	FLCN
Targeted Therapy	mTOR inhibition (Rapamycin/Sirolimus)	Kinase Inhibitors?	

Cystic Lung Disease: MOC Reflective Statement

- Many causes of cystic lung disease
- Three cystic lung disease have specific genetic signatures and non-pulmonary manifestations:
 - Lymphangioleiomyomatosis (LAM) (TSC1/2)
 - Pulmonary Langerhans cell histiocytosis (PLCH) (B-RAF)
 - -Birt Hogg Dube syndrome (BHD) (FLCN)
- Kidney tumors in LAM (angiomyolipoma) and BHD (carcinoma)
- LAM has a specific, FDA-approved therapy: Rapamycin/sirolimus

- All women with suspected LAM should have abdominal imaging because 50% have:
 - A) Hepatic angiomyolipomas
 - B) Renal angiomyolipomas
 - C) Ovarian cysts

- All women with LAM should have abdominal imaging because 50% have:
 - A) Hepatic angiomyolipomas
 - B) Renal angiomyolipomas
 - C) Ovarian cysts

Patients with Birt-Hogg-Dube should have abdominal imaging because 25% develop:

- A) Liver cysts
- B) Renal cell carcinoma
- C) Peritonitis

Patients with Birt-Hogg-Dube should have abdominal imaging because of the risk of:

- A) Liver cysts
- B) Renal cell carcinoma
- C) Peritonitis

Proven effective therapy for Lymphangioleiomyomatosis (LAM):

- A) VEGF inhibition
- B) mTOR inhibition
- C) Corticosteroids

Proven effective therapy for Lymphangioleiomyomatosis (LAM):

- A) VEGF inhibition
- B) mTOR inhibition (Rapamycin/Sirolimus)
- C) Corticosteroids